Pomysł polega na tym, by skrzyżować linie ziemskiego pola magnetycznego, dla którego wartość składowej stycznej do powierzchni Ziemi wektora indukcji jest znana, z liniami pola liniami pola o nieznanym wektorze indukcji . Gdy obecne jest jedynie ziemskie pole, igła magnetyczna ustawi się tak, jak na Rys. 1. lodowa igła u rynny ★★★ SOSNA: jej liściem igła ★★★ WALEC: bryła, co drogę zrobiła ★★★★ sylwek: FRESKI: malowidła ścienne ★★★ KOMPAS: w nim ruchoma igła ★★★ OSTREK: oś, na której obraca się igła magnetyczna busoli ★★★★★ mariola1958: SZYDŁO: gruba igła do szycia ★★ ZAZULA: zrobiła Diamagnetyzm obserwujemy tylko wtedy, gdy nie jest on przesłonięty innym rodzajem magnetyzmu, czyli w związkach o kompletnej liczbie par elektronowych. Czas w takim razie zastanowić się jak zachowują się atomy, którym kompletacja par z różnych powodów się nie udaje. Jako przykład weźmy niezwykle reaktywny i dość niebezpieczny Ziemia okrąża Słońce raz na 365 dni i obraca się wokół swojej osi raz na 24 godziny. Dzień i noc wynikają z tego, że Ziemia obraca się wokół swojej osi, a nie orbituje wokół Słońca. Termin „doba” jest określony przez czas potrzebny na jednokrotny obrót Ziemi wokół własnej osi i obejmuje zarówno dzień, jak i noc. Ustaw rozmaz na scenie, a następnie skoncentruj się na obrazie. Badanie okazu za pomocą okularu lub obiektywu. Podczas początkowej fazy upewnij się, że kondensor znajduje się na poziomie stolika w oscyloskopie. Całkowicie otwórz przysłonę apertury kondensora. Następnie, przechylając ostrość lustra, możesz przesuwać oś optyczną. jelaskan perbedaan politik luar negeri dan politik internasional. Magnetyzm jest znany ludziom od czasów starożytnych. Pierwsza pisemna wzmianka o nim pochodzi z I wieku pne. e., ale naukowcy uważają, że wiedza na temat tego zjawiska pojawiła się znacznie wcześniej. Jest globalna, a życie bez niej na naszej planecie jest niemożliwe. Dlatego badacze przez cały czas próbowali badać tę siłę i ograniczać ją dla postępu ludzkości. Pole magnetyczne Żyjąc na Ziemi, nie zauważając tego, jesteśmy stale pod wpływem różnych sił. Pole magnetyczne nie jest wyjątkiem od tej reguły. Chociaż, dokładniej, definiuje się go jako szczególny rodzaj materii, a nie na siłę. Źródłem jego występowania są naładowane cząstki elektryczne lub magnesy. Jeśli przyjmiemy przestrzenną charakterystykę tej materii, wówczas jest to kombinacja sił zdolnych do działania na namagnesowane ciała. Ta zdolność wynika z ruchu wyładowań między cząsteczkami obiektu. Głównym warunkiem powstania takiego pola jest ciągły ruch. ładunki elektryczne. Interakcja pól magnetycznych i elektrycznych doprowadziła do tego, że nie mogą istnieć oddzielnie. Zjawisko to nazywa się polem elektromagnetycznym. Wszystkie elementy takiej materii są ze sobą nierozerwalnie połączone i działają tak, że zmieniają się ich właściwości. Właściwości magnetyczne Pole magnetyczne, podobnie jak każde inne zjawisko fizyczne na Ziemi, ma swoją własną charakterystykę: Pochodzenie to przenoszenie ładunków elektrycznych. Indukcja pola magnetycznego jest jego główną charakterystyką siły, która istnieje w każdym z jej poszczególnych punktów i jest kierunkowa. Jego wpływ ogranicza się do magnesów, ruchomych ładunków i prądów. Jest podzielony przez naukowców na dwa rodzaje: stały i zmienny. Osoba bez specjalnych urządzeń nie wyczuwa wpływu magnetyzmu. Jest to zjawisko elektrodynamiczne, ponieważ źródłem jego pochodzenia są poruszające się cząstki. prąd elektryczny. I tylko te same cząstki mogą być dotknięte przez pole magnetyczne. Trajektoria ruchu naładowanych cząstek może być prostopadła. Indukcja w magnetyzmie Indukcja pola magnetycznego jest określona przez jego kierunkowość, to znaczy jest ona wektorem i jest nieodłącznym elementem każdej dziedziny występującej w takich warunkach. Jest zawsze skierowany w taki sam sposób, jak strzałka, która swobodnie się obraca w kompasie. Tego rodzaju pole całkowicie charakteryzuje się indukcją magnetyczną. Każdy punkt jest nośnikiem kierunku i modułu tej siły. Jeśli są one takie same dla wszystkich punktów tego pola, to nazywa się je jednorodne. Indukcja pola magnetycznego w fizyce jest oznaczona przez wektor i wielką literę alfabetu łacińskiego B. Formuła indukcji magnetycznej Aby obliczyć tę charakterystykę mocy, musisz znać wzór do jej obliczenia: B = F: I x l. W tym wzorze: B oznacza indukcję pola magnetycznego; F jest siłą działającą na przewodnik od strony pola; I - siła, z jaką prąd przechodzi przez przewodnik; l jest faktyczną długością samego przewodnika. Jednostką indukcji, według Międzynarodowego Systemu Jednostek, jest Tesla (T). Linie przechodzące w polu magnetycznym Indukcja magnetyczna ma wektor, czyli kierunkowość. Jeśli jest wyświetlany na papierze, zostanie wyrażony w liniach. Zbiegają się one ze stycznymi, które mają ten sam kierunek, co wektor indukcyjny. Jeżeli pole magnetyczne jest jednorodne, wówczas te linie biegną równolegle do siebie. Gdy nie jest jednorodna, kierunek tej siły będzie różny we wszystkich punktach pola, a styczne do nich będą wyglądać jak koła. Magnetyzm magnetyczny Pole magnetyczne może być tworzone przez różne obiekty, na przykład solenoid. Solenoid w swej istocie jest elektromagnesem, czyli cewką indukcyjną. Aby utworzyć solenoid, wymagana jest cylindryczna powierzchnia (rdzeń) i izolowany żyły przewodnik (drut), który jest nawinięty na rdzeń. Prąd płynący przez drut tworzy tego rodzaju materię wokół solenoidu. W tym momencie zamienia się w magnes. Jeśli wyłączysz elektryczność, wszystkie specjalne właściwości solenoidu znikną, a po ponownym włączeniu zostaną wznowione. Im więcej powinieneś owijać wokół rdzenia i im więcej prądu jest dostarczane, tym silniejsza będzie atrakcyjność solenoidu. Magnetyczny cewka indukcyjna Bardzo interesujące jest uwzględnienie solenoidu, którego długość jest znacznie większa niż jego średnica. Indukcja pola magnetycznego solenoidu w tym przypadku wszędzie ma jedną kierunkowość, która jest równoległa do rdzenia cewki, co oznacza, że ​​każda linia pola jest równoległa do siebie. Jeżeli przewodnik jest równomiernie nawinięty, to nie tylko kierunek jest taki sam, wartość liczbowa będzie również taka sama. Ze względu na to, że solenoid ma bardzo prostą konstrukcję, jego pole zostało uznane za standard polowy. Magnetosfera ziemska Na naszej planecie są miliony magnesów różnej wielkości i pochodzenia, ale największą z nich, do której ciągle się dotykamy, jest nasza Ziemia. Pierwszy raz o Ziemi jako o podobnym temacie powiedziano w 1600 roku. W tym roku naznaczono pojawienie się książki angielskiego fizyka Williama Hilberta, w której ściśle łączy on Ziemię i tę sprawę. Ponadto mówi on, że oś ziemskiego pola magnetycznego i oś, wzdłuż której obraca się planeta, nie są identyczne, ale przeciwnie, mają tylko jeden punkt kontaktu. Jeśli stworzysz graficzny rysunek tego zjawiska wokół naszej niebieskiej kuli, natychmiast stanie się oczywiste, że jest bardzo podobny do zwykłego magnes trwały. Pierwsze mapy pokazujące naszą planetę z tego kierunku zostały narysowane przez E. Halleya w 1702 roku. Jak ziemia regeneruje swoje szczególne właściwości? To całkiem proste. Jak wiadomo, istnieje rdzeń w głębi naszej planety. Jest to ogromna kula rozgrzanego do czerwoności żelaza, która jest doskonałym przewodnikiem prądu, czyli naładowanym rdzeniem i zapewnia potężne przepływy cząstek. Z powodu tego zjawiska Ziemia jest otoczona przez magnetosferę, która chroni ją przed negatywnymi wpływami z głębi kosmosu, a nawet z naszego własnego Słońca. Indukcja pola magnetycznego Ziemi wynosi 0,5 · 10 - 4 T. Zmiany w magnetosferze Ziemi Po odkryciu ziemskiego pola magnetycznego wielu fizyków zdecydowało się rozwiązać ten problem. W 1635 r. G. Hellibrand odkrył, że ta warstwa globu ulega ciągłym zmianom. Zmiany te są podzielone na dwa rodzaje: stały i krótkoterminowy. Trwałe występowanie z powodu złóż minerałów rudy, które powodują odkształcenia spowodowane własnymi silnymi przepływami energii. Winowajcą krótkoterminowych zmian jest tak zwany "wiatr słoneczny". Jest to strumień cząstek elektrycznych, które wybuchają z powierzchni Słońca. Interakcja tych dwóch zjawisk prowadzi do "burz magnetycznych". Jeśli taka burza jest silna, może nawet doprowadzić do utraty łączności radiowej lub niepewności igły kompasu. Jednym z najpiękniejszych efektów takich burz jest Northern Lights, ponieważ bieguny są szczególnie podatne na ich wpływ. Tak więc magnetyzm jest obecny w życiu każdego człowieka. Wpływa na nas, nawet jeśli nie czujemy tego. Z powodu tego zjawiska nasza planeta nie jest narażona na negatywne wpływy z zewnątrz, a my mamy okazję obserwować barwne kolory Aurory. Ziemia ma zarówno bieguny geograficzne, jak i magnetyczne. Geograficzne bieguny północny i południowy wyznaczają przeciwległe końce osi centralnej, na której obraca się Ziemia. Jednak położenia biegunów północnego i południowego nie są punktami stałymi, a ich odległość od odpowiadających im biegunów geograficznych może się różnić nawet o kilka tysięcy kilometrów. Ziemskie pole magnetyczne jest generowane przez wirowanie planety i zachowanie płynu bogatego w żelazo znajdującego się w ziemskim rdzeniu. Tym samym pole magnetyczne – i bieguny magnetyczne – zmieniają się w odpowiedzi na prędkość i wzór ruchu tego płynu. Czytaj też: Kanada wysuwa roszczenia w sprawie bieguna północnego Igły kompasu są zaprojektowane w celu wyrównania z polem magnetycznym Ziemi. Północny koniec igły wskazuje na biegun północny, a przeciwny – na południowy. Kiedy wyjmiemy kompas i pozwolimy, aby igła osiadła, będzie działać równolegle do linii ziemskiego pola magnetycznego, na którym stoimy. Sęk w tym, że pole magnetyczne nie jest ułożone w linie prostej od bieguna północnego do południowego. W miarę zbliżania się do magnetycznego bieguna południowego, linie pola będą się wyginać i znajdą bliżej magnetycznego bieguna południowego, biegnąc prostopadle do powierzchni Ziemi. Gdybyśmy chcieli więc odwiedzić biegun południowy, mając kompas ze swobodnie “dryfującą” igłą, która mogłaby poruszać się w trzech wymiarach, po dotarciu do magnetycznego bieguna południowego “południowy” koniec tej igły wskazywałby prosto w dół. Ten sam kompas zachowywałby się podobnie na magnetycznym biegunie północnym. Tylko na równiku typowy kompas zapewni najbardziej dokładny odczyt kierunku północnego i południowego. [Źródło: Czytaj też: Ziemskie bieguny magnetyczne mogą odwracać się częściej niż sądzono Rozdział III: Magnetyzm Każdy magnes ma dwa bieguny: północny (N) i południowy (S). Magnesy zwrócone do siebie takimi samymi (jednoimiennymi) biegunami odpychają się, a różnoimiennymi przyciągają się magnes wytwarza wokół siebie pole magnetyczne. Pole magnetyczne to przestrzeń, w której działają siły magnetyczne. Ziemia zachowuje się jak wielki magnes. Południowy biegun magnetyczny Ziemi jest w okolicach północnego bieguna geograficznego, a północny biegun magnetyczny w okolicach południowego bieguna geograficznego Ziemi. Ziemskie pole magnetyczne wykorzystuje się w działaniu kompasów, których najważniejszym elementem jest igła magnetyczna. Igła magnetyczna to mała blaszka w kształcie dwustronnej wskazówki, wskazująca kierunki północ-południe. Różne substancje wykazują różne własności magnetyczne. Substancje, które wykazują najsilniejsze własności magnetyczne nazywają się ferromagnetykami. W ich budowie wewnętrznej można wyróżnić małe obszary namagnesowania, tzw. domeny magnetyczne, które zachowują się jak małe magnesy. Są one najczęściej ułożone chaotycznie. Uporządkowanie domen nazywamy namagnesowaniem, ferromagnetyk staje się wtedy trwałym magnesem. Substancjami ferromagnetycznymi są np. żelazo, kobalt, magnetyczne (podobnie jak elektrostatyczne) przedstawiamy graficznie za pomocą linii pola. Są one umownie zwrócone do bieguna N w stronę bieguna S. Przewodniki, przez które płynie prąd wykazują właściwości magnetyczne. Igła magnetyczna ustawiona w pobliżu przewodnika z prądem odchyla się. Zwojnica z prądem wytwarza pole magnetyczne takie jak pole magnesu sztabkowego. Jego bieguny możemy wyznaczyć w ten sposób, że jeśli prawą dłonią obejmiemy zwojnicę tak, aby palce wskazywały kierunek prądu, to odgięty kciuk wskaże biegun magnetyczny północny (N). Linie pola magnetycznego wewnątrz zwojnicy są do siebie równoległe, czyli pole magnetyczne jest przewodniki z prądem oddziałują na siebie wzajemnie. Jeśli prąd płynie w nich w tę samą stronę – przewodniki przyciągają się, jeśli w przeciwne strony – odpychają się. Zjawisko wzajemnego oddziaływania przewodników z prądem wykorzystano do zdefiniowania jednostki natężenia prądu – 1 ampera. Prąd ma natężenie 1 A, jeśli płynąc w dwóch nieskończenie długich, cienkich przewodnikach prostoliniowych umieszczonych w próżni w odległości 1m od siebie, powoduje, że działają one na siebie siłą 2•10–7N na każdy metr ich długości. Elektromagnes to urządzenie składające się ze zwojnicy, przez którą płynie prąd i umieszczonego w niej rdzenia wykonanego z ferromagnetyka. Rdzenie najczęściej wykonuje się z tzw. stali miękkiej, która łatwo się magnesuje i rozmagnesowuje. Elektromagnesy działają jak elektromagnesu można wzmocnić zwiększając liczbę zwojów nawiniętych na rdzeń lub wartość natężenia prądu w znalazły duże zastosowanie do transportu żelaznych elementów, do budowy dzwonków elektrycznych, w głośnikach, kolei magnetycznej, w medycynie itp. Na przewodnik z prądem umieszczony w polu magnetycznym działa siła magnetyczna zwana też siłą elektrodynamiczną. Wartość tej siły zależy od natężenia prądu płynącego w przewodniku, od długości przewodnika i od tego jak silne jest pole magnetyczne. Wartość siły elektromagnetycznej obliczamy ze wzoru: F=B∙I∙l Współczynnik B nazywamy indukcją magnetyczną. Jest to wielkość wektorowa, charakteryzująca pole magnetyczne. Im silniejszy magnes tym większa jest indukcja pola, które on wytwarza. Kierunek wektora indukcji jest styczny do linii pola magnetycznego, a zwrot taki jak zwrot linii pola. Jednostką indukcji magnetycznej jest 1T (tesla). Kierunek i zwrot siły magnetycznej ustalamy z tzw. reguły lewej dłoni: jeżeli lewą dłoń ustawimy tak, aby jej wewnętrzna strona była zwrócona w stronę północnego bieguna magnesu, a wszystkie palce (z wyjątkiem odchylonego kciuka) wskazywały kierunek prądu, to kciuk wskaże kierunek i zwrot siły siły magnetycznej wykorzystano w konstrukcji silnika elektrycznego. Silnik elektryczny jest urządzeniem przetwarzającym energię elektryczną na energię mechaniczną. W silniku oddziałują na siebie wirnik, składający się z kilku zwojnic umieszczonych w polu magnetycznym i nieruchomy stojan. Na zwojnice działa siła magnetyczna powodująca obrót wirnika. Razem z wirnikiem obracają się metalowe półpierścienie tzw. komutator, połączony za pośrednictwem szczotek ze źródłem prądu. Zadaniem komutatora jest zmiana kierunku prądu w uzwojeniach, aby utrzymać ciągły ruch obrotowy wirnika. Jeśli zamknięty obwód elektryczny umieścimy w zmiennym polu magnetycznym, to w przewodniku wzbudzi się prąd elektryczny. Takie zjawisko nazywamy indukcją elektromagnetyczną, a powstający prąd – prądem indukcyjnym. Prąd indukcyjny można wytworzyć np. zbliżając magnes do zwojnicy. Kierunek prądu indukcyjnego określa reguła Lenza, która mówi, że prąd indukcyjny płynie w takim kierunku, że pole magnetyczne przez niego wytworzone przeciwdziała przyczynie, która go wytworzyła (zmianom pola magnetycznego, dzięki którym prąd indukcyjny powstał). Zjawisko indukcji elektromagnetycznej wykorzystano do budowy prądnicy. Prądnica zbudowana jest podobnie do silnika elektrycznego, ale służy do przetwarzania energii mechanicznej na elektryczną. W ramce obracanej w polu magnetycznym wzbudza się prąd indukcyjny. Prąd ten nazywamy przemiennym, ponieważ cyklicznie zmienia się jego natężenie i kierunek jego urządzeniem wykorzystującym zjawisko indukcji elektromagnetycznej jest transformator. Służy on do zmiany napięcia. Zbudowany jest z ferromagnetycznego rdzenia, na który nawinięte są dwie zwojnice. Jedna z nich, tzw. uzwojenie pierwotne, podłączona jest do źródła prądu przemiennego. Prąd ten wytwarza w rdzeniu zmienne pole magnetyczne, a w drugiej zwojnicy, tzw. uzwojeniu wtórnym, powstaje prąd indukcyjny. Stosunek napięć w obu uzwojeniach jest równy stosunkowi liczny zwojów: Up/Uw =np/nw Transformator, który obniża napięcie, podwyższa równocześnie natężenie prądu: Ip/Iw =nw/np Ten materiał został opracowany przez Przeczytanie i zapamiętanie tych informacji ułatwi Ci zdanie klasówki. Pamiętaj korzystanie z naszych opracowań nie zastępuje Twoich obecności w szkole, korzystania z podręczników i rozwiązywania zadań domowych. Magnetyzm to dział fizyki zajmujący się oddziaływaniami magnetycznymi materiałów magnetycznych i magnesów oraz przewodników z prądem. W tym artykule znajdziesz podsumowanie najważniejszych informacji o magnetyzmie oraz najważniejsze wzory i zasady z tego działu. Najważniejsze zagadnienia magnetyzmu: Magnesy i bieguny magnetyczne, ferromagnetykiPole magnetyczne, pole magnetyczne ZiemiWłaściwości magnetyczne przewodników z prądem: Linie pola magnetycznego, Pole magnetyczne przewodnika prostoliniowego i Reguła prawej dłoni, Pole magnetyczne przewodnika kołowego, Pole magnetyczne zwojnicy i reguła prawej dłoni dla zwojnicyZjawisko indukcji magnetycznejElektromagnes, Silnik prądu stałegoDodatkowo: Reguła lewej dłoni, Reguła Lenza, Transformator 1. Magnesy Magnes to ciało, które „samo” przyciąga żelazo oraz przyciąga lub odpycha inne magnesy. Magnes wytwarza pole magnetyczne. Każdy magnes posiada dwa bieguny: północny N (zwykle oznaczany kolorem czerwonym) oraz południowy S (zwykle oznaczany kolorem niebieskim). Dwa bieguny magnetyczne jednoimienne (N i N lub S i S) odpychają się wzajemnie, a dwa bieguny różnoimienne (N i S) przyciągają się wzajemnie. Czytaj dalej → 2. Pole magnetyczne Właściwości przestrzeni, w której na umieszczoną igłę magnetyczną (magnes) działają siły magnetyczne nazywamy polem magnetycznym. Igła magnetyczna to mały magnes – znany nam z choćby z kompasu. Jeżeli zbliżymy ją do innego magnesu obróci się wskazując biegun północny tego magnesu. Czytaj dalej → 3. Pole magnetyczne Ziemi Wokół Ziemi istnieje pole magnetyczne. Ziemia zachowuje się jak ogromny magnes sztabkowy. Igła kompasu pokazuje geograficzną północ (i biegun magnetyczny południowy). Czytaj dalej → aby dowiedzieć się dlaczego. Na biegunie geograficznym północnym istnieje biegun magnetyczny południowy, a na biegunie geograficznym południowym biegun magnetyczny północny. 4. Ferromagnetyki Ferromagnetyki to materiały o najsilniejszych właściwościach magnetycznych. Przykładem ferromagnetyka jest żelazo (ferrum po łacinie oznacza właśnie żelazo). Magnes trwały to namagnesowany ferromagnetyk. Ferromagnetyki posiadają domeny magnetyczne, które działają one jak małe magnesy. Domeny magnetyczne są ułożone chaotycznie ale podczas namagnesowania są uporządkowywane i ferromagnetyk staje się magnesem. Czytaj dalej → 5. Właściwości magnetyczne przewodników z prądem Linie pola magnetycznego Pole magnetyczne na rysunku przedstawiamy przy pomocy linii pola magnetycznego. Igła magnetyczna ustawia się zawsze stycznie do linii pola magnetycznego, a biegun północny igły magnetycznej określa zwrot linii. Linie na zewnątrz magnesu mają zwrot od bieguna magnetycznego północnego do bieguna magnetycznego południowego. Pole magnetyczne prostoliniowego przewodnika z prądem Linie pola magnetycznego wokół prostoliniowego przewodnika z prądem mają kształt okręgów leżących w płaszczyźnie prostopadłej do przewodnika, a środki tych okręgów pokrywają się z przewodnikiem. Zwrot tych linii określa reguła prawej dłoni: Jeżeli prawą dłoń obejmiemy przewodnik prostoliniowy w ten sposób, że odchylony kciuk będzie wskazywał kierunek prądu w przewodniku, to ugięte pozostałe palce wskażą zwrot linii pola magnetycznego Pole magnetyczne przewodnika kołowego Jeżeli prąd w przewodniku kołowym płynie zgodnie z ruchem wskazówek zegara to po naszej stronie znajduje się biegun południowy, a po przeciwnej północny. Pole magnetyczne zwojnicy Aby określić bieguny magnetyczne zwojnicy możemy skorzystać z powyższej reguły lub przy pomocy prawej dłoni: Prawą dłonią obejmujemy zwojnicę tak, aby palce wskazywały kierunek prądu w poszczególnych zwojach, a odchylony kciuk wskaże wtedy biegun północny zwojnicy. 6. Zjawisko indukcji magnetycznej Zjawisko indukcji magnetycznej polega na wytworzeniu prądu indukcyjnego w obwodzie, w którym zmienia się pole magnetyczne. Czytaj dalej → 7. Elektromagnes Elektromagnesy wytwarzają silne pole magnetyczne po zasileniu prądem elektrycznym. Elektromagnes zbudowany jest ze zwojnicy i rdzenia ferromagnetycznego. Rdzeń wzmacnia pole magnetyczne zwojnicy nawet kilkaset razy. Najprostszy elektromagnes można wykonać nawijając na gwóżdź przewód elektryczny i podłączając go do baterii. Po podłączeniu będzie on przyciągał niektóre małe przedmioty np. stalowe szpilki. Przykłady zastosowania elektromagnesu to: silniki, prądnice i dzwonek do drzwi. Czytaj dalej → 8. Silnik prądu stałego Silnik elektryczny to urządzenie zamieniające energię elektryczną na mechaniczną. asada działania silnika prądu stałego opiera się na wykorzystaniu pola magnetycznego do obrotu elementu silnika zwanego wirnikiem. Zasada działania silnika prądu stałego: Dwa magnesy różnoimienne stojanu wytwarzają pole magnetyczne, w którym umieszczony jest wirnik, przez który przepływa prąd elektryczny. Pole magnetyczne działa na podłączony do prądu wirnik parą sił, która powoduje obrót wirnika. Komutator zmieniając kierunek prądu w ramce powoduje ciągły obrót wirnika. Czytaj dalej → 9. Dodatkowe informacje Reguła lewej dłoni Na przewodnik z prądem umieszczony w polu magnetycznym działa siła elektrodynamiczna. Kierunek i zwrot siły elektrodynamicznej określa reguła lewej dłoni: Lewą dłoń należy umieścić tak, aby linie sił pola wchodziły prostopadle od wnętrza dłoni, wyprostowane palce wskazywały kierunek prądu, a odchylony kciuk wskaże wtedy kierunek i zwrot siły elektrodynamicznej. Pole magnetyczne działa na przewodnik największą siłą wtedy, gdy jest on ustawiony prostopadle do linii pola magnetycznego. Gdy przewodnik jest ustawiony równolegle do linii pola, wtedy siła elektrodynamiczna jest równa zero. Kierunek siły elektrodynamicznej jest zawsze prostopadły do linii pola magnetycznego i do kierunku przepływu prądu. Reguła Lenza („ reguła przekory” ): Kierunek prądu indukcyjnego jest taki, że pole magnetyczne przez niego wytworzone przeszkadza przyczynie, która go wywołuje. Reguła Lenza wynika z zasady zachowania energii. Zgodnie z tą regułą, gdy zbliżamy magnes do zwojnicy biegunem północnym, to po stronie magnesu zwojnica wytworzy również biegun północny, aby odpychać zbliżający się magnes. Pokonując siłę odpychania magnesu i zwojnicy wykonamy pracę, która zamieni się na energię elektryczną. Zasada zachowania energii zostanie spełniona. Prąd przemienny to taki prąd, którego natężenie prądu i kierunek przepływu prądu ulegają zmianie. Transformator Transformator działa w oparciu o zjawisko indukcji elektromagnetycznej. Związek między liczbą zwojów uzwojenia pierwotnego i wtórnego, a napięciami i natężeniami prądów w uzwojeniach: \large \frac{n_w}{n_p} = \frac{U_w}{U_p} \large \frac{n_w}{n_p} = \frac{I_p}{I_w} n w, n p – liczba zwojów uzwojenia wtórnego i pierwotnegoU w , U p – napięcia na uzwojeniu wtórnym i pierwotnymI w , I p – natężenia prądów w uzwojeniu wtórnym i pierwotnym. Moc uzwojenia wtórnego nie może być większa od mocy uzwojenia pierwotnego, ponieważ transformator jedynie przetwarza energię elektryczną. Pole magnetyczne jest obszarem, w którym działają siły magnetyczne. Stanowi ono jedną z postaci pola elektromagnetycznego. Źródłem pola magnetycznego są poruszające się w nim ładunki elektryczne. Pole magnetyczne posiada charakterystyczną właściwość przestrzeni, która polega na tym, iż jeśli w tej przestrzeni umieści się magnesy lub przewodniki z przepływającym przez nie prądem elektrycznym lub poruszającymi się ładunkami elektrycznymi, to będą na nie działały siły magnetyczne. Do wykrywania pola magnetycznego służy najczęściej mały, lekki magnes uformowany na kształt igły (tzw. igła magnetyczna). Końce igły magnetycznej są pomalowane zazwyczaj na kolor czerwony i niebieski. Igłą magnetyczną może być także kawałek namagnesowanego drutu. Żeby igła magnetyczna działała, musi mieć możliwość lekkiego obracania się. Opory ruchu w czasie obrotu powinny być niewielkie. W celu osiągnięcia tego można podeprzeć igłę magnetyczną na czubku jakiegoś szpikulca w samym środku ciężkości. Jeżeli szpilka ma ostry koniec, to opory ruchu podczas obracania będą niewielkie. Nawet mała siła magnetyczna spowoduje przekręcenie się igły. Pole magnetyczne posiada taką właściwość przestrzeni, iż umieszczone wewnątrz danego obszaru igły magnetyczne będą mogły obracać się lub utrzymywać stały kierunek, pomimo prób wytrącania ich z pierwotnego ustawienia. Drugim sposobem na wykrywanie pola magnetycznego jest badanie siły działającej na ładunki elektryczne. Albowiem pole magnetyczne działa również na poruszające się cząstki naładowane bądź na przewodniki z prądem, w których poruszają się ładunki. Siłę działającą na ładunek elektryczny poruszający się w polu magnetycznym nazywamy siłą Lorentza. Własności pola magnetycznego: Pole magnetyczne charakteryzują dwa rodzaje wektorów: natężenia pola magnetycznego H oraz indukcji magnetycznej B. Nazywa się je także polem wektorowym i przedstawia jako linie pola magnetycznego. Jego kierunek określa ustawienie igły magnetycznej albo obwodu, w którym płynie prąd elektryczny. Pole magnetyczne definiuje się poprzez siłę działająca na poruszający się ładunek w tym polu. W kołowym polu magnetycznym linie układają się we współśrodkowe okręgi. Wytwarza je nieskończenie długi prostoliniowy przewodnik. Indukcja magnetyczna tego rodzaju pola maleje odwrotnie proporcjonalnie do odległości od przewodnika. Źródłami pola magnetycznego są: trwale namagnesowane ciała, ładunki elektryczne w ruchu jednostajnym, Ziemia, magnesy. Stal w polu magnetycznym zakłóca to pole, gdyż wytwarza ona swoje własne pole.

oś na której obraca się igła magnetyczna